@ istop

Keep Growing

Android Development-Curriculum

1.INTRODUCTION TO ANDROID

11 Introduction to Mobile Development

1.2 Native vs Cross Platform
Native apps are available for download exclusively in platform-dedicated app stores, such as Google Play
Store for Android apps and Apple App Store for iOS apps. Cross-platform and hybrid apps can be made
available and promoted on multiple app stores.

1.3 Installing Android Studio
1.4 Android Studio Overview

+ Integrated Development Environment (IDE)
+ XMLattributes

1.5 Basic Android Application

2.ANDROID COMPONENTS

21 Android Activity Lifecycle
- Lifecycle states
+ Callback methods

2.2 Android App Components

3.CREATING AN APPLICATION IN ANDROID

SMS Application - Part 1
SMS Application - Part 2
SMS Application - Part 3

4.KOTLIN

41 Kotlin vs Java

+ Syntax - Kotlin has a modern, concise syntax that reduces bugs and boilerplate. Java's syntax is
mostly derived from C and C++.

+ Performance - Kotlin and Java have similar performance, but Kotlin may have an advantage for small
programs. Java code is typically compiled faster than Kotlin

4.2 Variables in Kotlin
Operators in Kotlin
+ Unary operators - These operators require a single operand and operate on it in place.
+ Arithmetic operators - These operators include Modulus, Subtraction, Multiplication and Division

4.3 Control Flow Part-1
4.4 Collections

17E, 1st Floor, 18th Cross, Sector 3, HSR Layout, Bangaluru

@ istop

Keep Growing

Android Development-Curriculum

4.5 Control Flow Part - 2 Loops

4.6 Functions

5. ADVANCE USER INTERFACE

51 Intents
+ Explicit
« Implicit

5.2 Fragments
« Fragments Life Cycle
« Fragments Callbacks

5.3 Shared Preferences
+ Allows activities and applications to keep preferences, in the form of key-value pairs similar to a Map that
will persist even when the user closes the application.

5.4 List View
+ Array
+ View Binding

5.5 Recycler View

« Custom Model
« Liner Layout
« Array List

6.WORKING WITH DATABASE

6.1 Intro Android Architecture

« MVP
« MVC
« MVVM

6.2 Entity
6.3 DAO

6.4 Room Database
« Live Data
- Abstract Class
« Companion Object
« Synchronise

17E, 1st Floor, 18th Cross, Sector 3, HSR Layout, Bangaluru

@ istop

Keep Growing

Android Development-Curriculum

6.5 Repository
+ Clean API
« Note Repository

6.6 ViewModel

7.FIREBASE

71 What is Database

7.2 Introduction to Firebase
- Firebase Analytics
+ App Connection

7.3 Connect App with Firebase (Manual)
7.4 Connect App with Firebase (Auto)

7.5 Firebase Authentication
« Liner Layout

« Lateinit VAR

7.6 Realtime Database

« How it Works
- HowtoUseit
« How to Emulate it

7.7 Firebase Storage
7.8 RetroFit

8.JETPACK

81 Text Column Row Basic

8.2 Instagram Ui Clone

9.ANDROID WITH MACHINE LEARNING

9.1 Machine Learning - Part 1

« TFHUBS
« Tensorflow Lite Model

9.2 Machine Learning - Part 2

17E, 1st Floor, 18th Cross, Sector 3, HSR Layout, Bangaluru

O

istop

Keep Growing

Android Development-Curriculum

CAPSTONE PROJECTS

1

MUSIC APPLICATION DEVELOPED USING KOTLIN

Kotlin for developing the app’s core logic and ULl

XML for designing the user interface (Ul) layouts.

Recycler View to display the list of songs in an efficient, scrollable format.

Services for managing background music playback, even when the app is in the background.

Foreground Tasks for keeping track of the currently playing song with notifications and controls, ensuring
seamless user experience when switching between tasks.

2 IMDB CLONE
+ Developed using Kotlin for clean and concise code.
« Integrated Retrofit for efficient REST APl communication with the backend.

« Employed Coroutines for seamless asynchronous network operations without blocking the Ul.
- Adhered to MVVM architecture to ensure scalability and maintainability of the codebase.

Utilised RecyclerView for optimised and dynamic presentation of movie data in a scrollable list.

3 COIN TRACK

Real-Time Cryptocurrency Data: Track current prices and trends of all major cryptocurrencies with live data
updates.

Favorites and Watchlist: Users can add coins to their favorites to monitor specific ones more easily.

Historical Data and Price Trends: Visualize price trends over time to help users make informed decisions.
MVVM Architecture: Built using the Model-View-ViewModel pattern for clean, maintainable, and scalable code.
Networking with REST APIs: Fetch live market data through reliable API sources for accurate information.

LIVE PROJECT

1 BLOG APPLICATION

17E, 1st

Developed using Kotlin for smooth and efficient functionality.

Implemented Retrofit for handling REST APl requests.

Integrated GET, POST, and DELETE methods to fetch, create, and delete blog posts.

Used Authentication mechanisms to ensure secure access to the application’s resources.
Managed network requests using Coroutines to keep the Ul responsive.

Followed MVVM architecture for a clean, modular, and maintainable codebase.

Floor, 18th Cross, Sector 3, HSR Layout, Bangaluru

